US 2005/0005261 Al

understood that not all meta-implementation layers of the
present invention include all of the types of descriptors and
implementations of the meta-implementation layer shown in
FIG. 1

[0112] Anenumeration descriptor describes a set of named
constants. Enumeration descriptors assign a string value to
the name that is used in the implementation to retrieve the
value for that name. The enumeration descriptor associates
this name with a configuration descriptor that holds the
attribute values necessary to create an instance of that value.
Enumeration descriptors are a datatype used by attribute
descriptors and parameter descriptors when the values
expected fall into a limited set of known constants.

[0113] “Other element descriptors” or “future element
descriptors” may be added to the metamodel to represent
new computing technology concepts not already captured in
other elements in the meta-implementation layer. These
future elements are first be defined in the meta-metareposi-
tory to define their structure and use. After being defined in
the meta-metamodel repository, instances of these descrip-
tors can be added to the metamodel repository.

[0114] An enumeration implementation is a set of constant
named values. The enumeration holds the name value pairs
and can retrieve the value for a given name and can retrieve
the name for a value. The names and values are constant and
cannot be changed once added to the enumeration.

[0115] Other element implementations or “future element
implementations” are defined for each “other element
descriptor”. These future implementation types will define
the features and functionality necessary for a future tech-
nology or future computer concept to be added to the
meta-implementation layer. The element implementation
will provide a mechanism to create instances of itself (as is
required of all implementations) as well as a mechanism to
use the implementation or instances for the purpose the
element implementation fulfills.

[0116] FIG. 2 illustrates metametamodel repository of
FIG. 1 in greater detail. The metametamodel repository
includes metamodel descriptors and metamodel implemen-
tations (metamodel descriptors describe model descriptors
and metamodel implementations describe model implemen-
tations). The Meta-metamodel repository includes metaenu-
meration descriptors, metarole descriptors, metahint
descriptors, metadatatype descriptors, metaconstraint
descriptors, metaattribute descriptors, other meta-element
descriptors, metaparameter descriptors, metamethod
descriptors, metasignal descriptors, metainterface descrip-
tors, metamodel descriptors, and metapackage descriptors.
Implementations include includes metaenumeration imple-
mentations, metarole descriptors, metahint implementations,
metadatatype implementations, metaconstraint implementa-
tions, metaattribute implementations, other meta-element
implementations, metaparameter implementations,
metamethod implementations, metasignal implementations,
metainterface implementations, metamodel implementa-
tions, and metapackage implementations.

[0117] Each of the types of metamodel descriptors of the
metametamodel repository of FIG. 2 is associated with a
similarly name descriptor in the metamodel repository. For
example, the metaenumeration descriptors of the metamodel
descriptors are associated with the enumeration descriptors

Jan. 6, 2005

of the metamodel repository. Similarly each of the types of
metamodel implementation is associated with similarly
named implementations. For example, the metaenumeration
implementations are associated with the enumeration imple-
mentations. Also, it should be understood that not all
metametamodel repositories of the present invention include
all of the types of metamodel descriptors and metamodel
implementations of the metamodel repository shown in
FIG. 2.

[0118] FIG. 3 illustrates a component integration engine
of the present invention that includes the meta-implemen-
tations layer of FIG. 1 and instances. The instances include
enumeration instances, role instances, hint instances,
datatype instances, constraint instances, attribute instances,
other element instances, parameter instances, method
instances, signal instances, interface instances, model
instances, and package instances. The component integra-
tion engine also includes shared services, pluggable authen-
tication, component assemblies, persistence engines, flow
chart assemblies and user access points.

[0119] Shared services are a set of operations used in
software applications that are available as part of the com-
ponent integration engine. These services may provide
access to platform specific functionality (like hardware
access, network listening, file storage, etc.), performance
sensitive functionality (like real-time scheduling, math-
ematical computations, etc.) or very common functionality
(like database access, email access, formatting, message
queuing, object caching, etc.). A shared service must imple-
ment the service interface that specifies how to start, stop,
and pause the service. Otherwise, shared services are inte-
grated into the component integration engine exactly like
any other component; they are described by descriptors and
accessible through the meta-implementation layer. The only
shared service required in a component integration engine is
a service to facilitate the control of the component integra-
tion engine itself. This service provides the support for
configuring the component integration engine and starting,
stopping, or pausing the component integration engine.

[0120] The pluggable authentication layer provides a stan-
dardized interface for authenticating users of the component
integration engine and assigning the appropriate credentials
to those users. Authentication is the process of verifying a
user is who the user claims to be. Authorization is the
process of granting permission to a user. Authorization
credentials are generally assigned during the authentication
process and are generally checked by access constraints.
Credentials may be created and assigned through other
means and authorization may be enforced by other mecha-
nisms. The pluggable authentication layer allows different
authentication components to be “plugged-in” or switched
around to provide the best component for performing the
authentication.

[0121] Component assemblies are groups of components
with defined relationships used together to perform a spe-
cific task. A component assembly is similar to a model
instance. Both component assemblies and model instances
have a set of data instances (models call these attributes,
component assemblies call these members). Both compo-
nent assemblies and model instances have a set of operations
that can be performed upon them (models call these meth-
ods, component assemblies call these operations). The dif-

